
User Manual
May 5, 2022

Team LumberHack

Sponsor:

Dr. Andrew J. Sánchez Meador

Mentor:

Melissa D. Rose

Team Members:

Matthew Flanders

Jenna Pedro

Thomas Whitney

Colin Wood

Version: 1.0

2

Table of Contents
Introduction 2

Installation 3

Configuration and Daily Operation 3

Maintenance 4

Troubleshooting 5

Conclusion 6

Introduction
We are excited to provide detail into how to use Team LumberHack’s mobile lidar scan

(MLS) processing application. The MLS processing application is an all inclusive tool that has

been designed and developed to meet the needs of forestry researchers and other mobile lidar

users. Some of the key features include:

● Uploading of multiple las/laz files to the application
● Cleaning and normalization of lidar scans with the click of a button
● Pre-processed 3d point cloud view of a lidar scan
● Ransac circle fitting to calculate useful tree characteristics
● Viewing of output in both a 3d point cloud and 2d table

The purpose of this user manual is to help you, the client, successfully install, administer,
and maintain this tool for your research needs going forward. The team’s goal is to make sure
that you are able to use the software that we have built for years to come.

3

Installation
As part of the installation, our team will assist in installing the software on your own

machine. The application is hosted on the github repository found here:

https://github.com/tommywhitney/mobile_lidar. To download the application, you must clone

the repository from the github page. Next, you will need to extract the entire folder to a location

of your preference. Once extracted, you can launch the project by opening the mobileLidar.Rproj

file in RStudio. Navigate to /R/app.R inside of the mobile_lidar directory. Open app.R and install

all of the packages that are loaded at the top of the file.

Current package dependencies

Next, ensure that you have the latest version of R devtools installed. More information can be

found here: https://www.r-project.org/nosvn/pandoc/devtools.html. With all of the package

dependencies and devtools installed, you are now ready to move onto the configuration and daily

operation steps to build and run the application.

Configuration and Daily Operation
To use the mobile lidar application, complete the following steps:

1) Open RStudio

2) Navigate to the directory where mobileLidar.Rproj is saved

3) Set RStudio to build documentation using Roxygen by clicking the Build tab, then

More -> Configure Build Tools and click the box for generating the appropriate

documentation.

4) Select OK and then build the appropriate documentation file by clicking the Build

tab, then More -> Document.

https://github.com/tommywhitney/mobile_lidar
https://www.r-project.org/nosvn/pandoc/devtools.html

4

5) Load the package and restart your R session, again using the Build tab.

6) In the console, either press “ctrl + shift + l” or type devtools::load_all(“.”)

7) Also in the console, either type runapp(‘app.R’) or open app.R in RStudio editor

and click on Run App button at the top right of the File Panel.

8) After a few moments, you will see a pop-up window displaying the Shiny web

application.

9) To upload a file, click on Browse… button

10) Then, select any las/laz file that doesn’t exceed 10GB from the Select File drop

down menu

11) To clean the data and click on the Clean Data button. A pop-up message window

will be shown for the cleaning process.

12) On the Table View tab, you will be able to see the laz/las file cleaned and its

metadata.

13) To open a 3D point cloud view prior to tree segmentation, click on the Draw

Point Cloud button and view it on the Point Cloud View tab.

14) To run RANSAC, click on the Run Ransac button.

15) To view segmented trees and data products on a 2D table, click on the Draw Slice

and Table button. When that process is completed, select the Slice View tab.

Maintenance
Maintaining the project will involve a couple separate tasks. First, and probably most

important, will be managing R package dependencies. The R dependencies are too many to list

here, but during the installation process all required packages will be enumerated by R.

Alternatively, use the built-in “available.packages()” function for a package of interest to see its

dependencies. Noteworthy here are the Shiny package, which drives the front-end, and the lidR

package, which powers much of the LiDAR processing pipeline and has many dependencies

itself. At the time of writing, there were no dependencies that required a less-than-current

(historical) release. However, in the event that some future version of any dependency is

breaking, an older release for that dependency might have to be installed, or the cause of the

issue addressed.

5

Second, auxiliary files that accumulate in the project’s directories may have to be cleared

occasionally for space reasons. These will most likely be .csv files in the src/ and root directories

that are used to pass LiDAR data between R and C++ functions. Removing these at any time

other than in the middle of processing will be harmless. Other temporary files such as .out and

.temp files created by the C++ compiler can also safely be removed at any time other than

runtime.

Access to the github repository will be arranged with Dr. Sánchez-Meador during the

final project delivery meeting on May 5, 2022. If some problem arises, email Thomas Whitney,

the owner of the repository, at tdw226@nau.edu.

Troubleshooting
During installation there is a chance that dependency problems will arise. Based on the

team’s experience, the problems are operating-system dependent, with Mac being substantially

more problematic than Windows. None of the team members installed the project on Linux. It is

difficult to predict exactly which problems will arise, because each person will have different

versions of operating systems, different package managers, and different libraries installed.

Unfortunately, R is known for its frustrating package management system. There are however

tools that can make this process easier. Rstudio comes with package management tools, and

Packrat is another alternative for managing R packages. R package dependency issues are not the

only that can arise. These rely in turn on various third party libraries that may or may not have to

be installed manually. On the Mac operating system, using the Homebrew package manager was

helpful in this regard.

It is difficult to predict which other problems might arise in the future, but an outline of

the likely cause for a variety of problem types is given here:

● Any issue with the user interface (e.g. non-responsive buttons, web page is blank, files do

not upload) is likely to be an issue with Shiny. All shiny code is located in the R/app.R

file. Run the app interactively in an R interpreter and look for errors.

● If after file upload, the cleaning normalization steps fail to complete, the problem likely

lies in the lidR package. Check to see if updates to the lidR package have been issued.

mailto:tdw226@nau.edu

6

Run the program interactively in an R interpreter and see at which step execution

fails–the lidR package’s cleaning and normalization functions have helpful outputs at

each step.

● If the number of trees identified does not match the expected/known number of trees in

the scan, or if multiple trees are being identified as a single tree, the issue likely lies with

the DBSCAN (density-based spatial clustering of applications with noise) algorithm,

which segments trees from one another. There are parameters to this algorithm that may

need to be changed, such as the minimum number of points needed to classify a point as

an inlier, and the radius used for point detection. Very dense forests may pose a need to

adjust these parameters, for instance. Read about DBSCAN here for more information:

https://en.wikipedia.org/wiki/DBSCAN.

● If tree measurements (e.g. radius, location, lean angle) are significantly inaccurate, the

problem likely lies with the RANSAC (random sample consensus) algorithms used to fit

shapes to the point cloud data. There are several parameters to this algorithm that can be

adjusted, but an explanation of these is outside the scope of this document. The

parameters have been set to a good medium between extremes, as far as the team can tell.

Point cloud quality may also be an issue here. Use a point cloud visualization technology

such as CloudCompare to inspect the trees. Scans of tree trunks should be obviously

cylindrical, with only a reasonable amount of outliers, and with a decent amount of point

density.

Conclusion

In conclusion the CS capstone team has been very excited and has worked hard to

develop the mobile lidar application and we hope that it has productive use in real world

applications in the improvement of forest ecosystem health. While we all look forward to our

next steps after graduation we are happy to answer any questions that may arise during the use of

this product.

https://en.wikipedia.org/wiki/DBSCAN

7

Best wishes:

Colin Wood, cvw29@nau.edu

Jenna Pedro, jtp275@nau.edu

Matthew Flanders, mtf83@nau.edu

ThomasWhitney, tdw222@nau.edu

mailto:cvw29@nau.edu
mailto:jtp275@nau.edu
mailto:mtf83@nau.edu
mailto:tdw222@nau.edu

